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We have studied quadric type energy (frequency) recursion relations resulting from fractal lattices.
We found that the allowed energy intervals in successive levels form two similar two-scale Cantor sets.
If we imagine the iterating procedure as a dynamical process, the iterating results in different levels gen-
erate a “time” sequence, and we can introduce an equal probability measure p; on a Cantor set and con-
struct, following Helsey et al. [Phys. Rev. A 33, 1141 (1986)], a partition function I'(q,7)= 3, ,p#/I];
finally, we obtain D, -q and f(a)-a curves. A number of exactly soluable examples are investigated.

PACS number(s): 05.90.+m, 47.20.Ky

I. INTRODUCTION

The concept of multifractality, which describes the dis-
tribution of singularitries of fractal measures, has been
shown to be important and useful. Multifractal features
are exhibited in many physical phenomena, such as in
diffusion-limited aggregation the growth probability of
perimeter sites of an aggregation cluster [1]; in percola-
tion the distribution of voltages across the different ele-
ments in a random-resister network [2]; in dynamical sys-
tems the probability of visiting a given region of a strange
attractor, and so on. The formulism of multifractal mea-
sures, which determine the distribution function f(a) of
singularities of strength a for a given measure, has been
presented [3,4].

We would like to see if there is similar nature for prob-
ability measure supported by the energy spectrum of an
electron on a fractal. Domany et al. [5] and Rammal
[6,7] have independently investigated the solution of the
Schrodinger equation with a tight-binding Hamiltonian;
they found that for a linear chain, Sierpinski gasket (SG)
embedded in two- and three-dimensional Euclidean
spaces and Berker lattices (hierarchical lattice) there is a
common feature: The energy spectrum of an electron is
divided into two parts, one of which obeys the recursion
relation and another one includes only some special iso-
lated values of energy, for which the recursion relation is
inapplicable.

In this paper we are particularly interested in the first
part of the energy spectrum mentioned above. Our
research shows that the allowed energy intervals in suc-
cessive levels approximately form two two-scale Cantor
sets. If we imagine the iterating procedure as a dynami-
cal process, (the iterating results in different levels gen-
erate a ‘“time” sequence), we can assign an equal proba-
bility measure on each Cantor set and then obtain an
fla)—a curve according to the formula given by Refs.
[3,4]. We hope that the results may be useful for gaining
some understanding of a kind of tight-binding type prob-
lem on fractal lattices.

II. THEORY AND GENERAL RESULTS

Following Refs. [5,6], we consider a set of nearest-
neighbor hopping Hamiltonians of the form

H=u > |i)il—t 3 iYGl+1i D 2.1)
i (i,j)

and work on some regular fractal lattices, where |i ) is a
local site function and u and ¢ are on-site energy and hop-
ping parameters, respectively. Using decimation trans-
formation in a Hilbert space spanned by the local site
functions |i ), one produces a quadratic recursion relation
for the eigenvalue of the Schrodinger equation like

€, =—€2+be,+b, . (2.2)
Here the subscript n denotes the nth stage of the con-
struction of fractal lattices, and b; and b, are constants.
The fixed points of Eq. (2.2) may be written as £* and &%
(let €% > €*); they are

(b, —1)£[(b;—1)>+4by]'"?
5 .

(2.3)

el=

In the examined examples, e.g., linear chain, two- and
three-dimensional SG and Berker lattices, the recursion
relation (2.2) has no stable fixed point or cycle. This
means no interval of € maps onto itself under repeated
applications of the recursion relation. In more detail, €
will go toward negative infinity for the region I,, i.e.,
e<e* and €>¢¥ +1, and thus the allowed energy inter-
val will be [g;,,€;,]=[e*,e% +1] for the level-1 con-
struction. Further, there is a smaller interval [e,;,€,,]
within [€,;,€;,] which maps under one time application
of recursion relation (2.2) onto a subset of 1| and then the
allowed regions will be [g,,,€,;] and [g,,,€;,] (see Fig. 1)
for the level-2 construction, the €,; and €,, are deter-
mined by substituting the edge value €,, into the left-
hand side of Eq. (2.2),
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FIG. 1. Allowed intervals (solid line) and gaps (dashed line)
of the spectrum obtained from the recursion relation (2.2) and
two two-scale Cantor sets are shown. (a) For two-dimensional
SG, g;,=—4, e,=1; £,=(—3—V'5)/2, e,,=(—3+V'5)/2;
€3, = —3.706, €3,= —3.1225, €;3=0.1225, £3,=0.706. (b) For

three-dimensional SG, ¢&,;=—6, £,=0; ¢&,,=—4.732,
€,=—1.268; €3, =—5.78, £3,=—5.066, €33=—0.934,
€34=—0.2195.

byE(b2—2{(b,+1)+[(b,—1)2+4by]"/?})?
2(+; 2 ‘

(2.4)

Continuuing in this manner, we generate all different
gaps in different stages of construction. In the limit
n — o, the allowed intervals shrink into a set of measure
zero eventually.

We now focus on the allowed regions for different lev-
els in the successive iterating process. We call these re-
gions “allowed” energy intervals because in the given lev-
el the energy values within the region will map onto the
allowed values in the previous level. In Fig. 1 we give a
sketch which shows that the allowed energy intervals
form two two-scale Cantor sets.

III. EXACTLY SOLUBLE EIGENVALUE PROBLEM
ON FRACTAL LATTICES

We now proceed to apply the general results to some
exactly soluble systems. Our emphasis is put on the ob-
servation of the two-scale Cantor set and the analysis of
multifractality.

A. Two-dimensional Sierpinski gasket

A Sierpinski gasket can be constructed as follows:
Start with a generator, shown in Fig. 2, then insert sites
into the generator so that the scale changes to 2. Con-
tinuing in the same way, we obtain the nth level SG
(n=1, 2,...). The boundary conditions identify the
corners of two triangles on the largest scale.

Solving the eigenvalue equation associated with the
tight-binding Hamiltonian (2.1) and employing the di-
mensionless energy parameter finally produces the recur-
sion relation for the eigenvalues [5]

€,_1=—€:—3¢,, (3.1)

where €; represents the eigenvalue of the level-i system.
Comparing (3.1) with (2.2) we found b, =—3, b,=0, and

L
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FIG. 2. Two-dimensional SG; n=1 stage of construction
corresponds to the generator.

thus, according to expression (2.3), the fixed points
e* =—4, ¢% =0. Following the results in Sec. II, we
present a sketch (see Fig. 1) of the forbidden energy re-
gions and allowed intervals in each stage of construction,
which shows the allowed energy regions [—4,1] in the
level-1 stage, [—4, (—3—V'5)/2] and [(—3+V'5)/2,1]
in the level-2 stage, and so forth. Numerical calculation
tells us that there are two approximate common length
rescaling factors for the size of the allowed energy inter-
vals between successive neighboring levels and with
which the allowed energy intervals form two similar
two-scale Cantor sets. In Fig. 1 we quote a number of
data up to the level-3 system, and choose the common
(average) length rescaling factors between successive
neighboring levels to be 0.353 and 0.225, respectively.

Let us just take one of the Cantor sets into account and
suppose a measure can be generated by the following pro-
cess. Start with the allowed energy interval
[(—34+V'5)/2,1] of the level-2 system, which has mea-
sure 1 and size 1.382, which is the length of the interval.
Divide the region in terms of the application of Eq. (3.1)
into two allowed pieces with size 0.504 and 0.294, an
equal probability measure of 0.5, and one gap. Repeating
the process, a measure possessing a recursive structure is
obtained and then one can find f(a), the distribution
function of singularities with strength a of the measure,
or equivalently the D,, a generalized dimension, in which
Dy, is just the fractal dimension of the support of the mea-
sure while D, is the information dimension and D, is the
correlation dimension [3,4].

For performing the mentioned points, we can construct
a partition function for the measure

m

pi gﬁ , m=n—2,n>2, (3.2)

I'(g,7)=
SO DT

where [,=0.353, [,=0.225, and p,=p,=0.5. Let
I'(g,7)=1; we obtain 7=7(q). Follow the standard pro-
cedure [3], the plot of D, vs g and the plot of f(a) vs
for the set are shown in Figs. 3 and 4.

B. Three-dimensional SG

Take a basic object, e.g., a tetrahedon, insert six sites
into each edge, remove the central small tetrahedon, and
then form a generator of three-dimensional SG (see Fig.
5). Continuing the iterating process produces a level-n
SG. We suppose that the corners are shared by two
tetrahedons on the largest scale. In the similar study
used before one gets the recursion relation of the dimen-
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FIG. 3. A sketch of D, vs g for the examined examples in the
text; the scale is not the same for different examples.

sionless energy eigenvalues as follows:

€,_1=—(e2+6¢,+6); (3.3)
this is also quadratic and its fixed points are €* = —6 and
e} =—1. Similar to the two-dimensional SG, the al-

lowed energy interval of the level-1 system which corre-
sponds to the generator of three-dimensional SG is
[€11,€12]=[—6,0]. For the next level, the allowed values
will be [ —6,—3—V'3] and [ —3+V'3,0]. Repeating the
iteration with the inverse of the recursion relation (3.3),
we finally obtain the forbidden gaps and the allowed ener-
gy regions for all different levels. Once again we find two
similar two-scale Cantor sets with common (average)
length rescale factors of 0.176 and 0.26, respectively.

As we have done before, a measure with hiearchical
structure may be introduced and a partition function
similar to (3.2) can be defined. Substituting p, =p,=0.5,
1,=0.176, and I, =0.26 into expression (3.2), we finally
obtain the curves f(a) and D,,.

In summary, for the Schrodinger eigenvalue equation
associated with the tight-binding type Hamiltonian on a
SG the energy spectrum includes two two-scale Cantor
sets with the same rescaling factors. By defining a mea-
sure with hierarchical structure and employing the stan-
dard procedure [3,4] we can determine the generalized di-
mension D, and the distribution function f(a).

C. Berker lattice

The Berker lattice is a hierarchical lattice and is gen-
erated in the manner indicated in Fig. 6. To insert a new
level of sites, replace each bond of the lattice by two
bonds with a site centered on each.

F(@)

o

FIG. 4. A plot of f(a) vs a for the examined examples in the
text; the scale is not the same for different examples.

n=o n=1

FIG. 5. Three-dimensional SG; n=1 stage of construction
corresponds to the generator.

When we find the solution of the Schrodinger eigenval-
ue equation with the tight-binding Hamiltonian, we must
note that the coordination number is different for sites
belonging to different generations, so in order to derive a
recursion formula of the eigenvalues, Domany et al. [5]
assume that the hopping parameters depend on the loca-
tion of the respective site on the lattice and result in a
simple recursion relation

£, 1= —€e2+2, (3.4)

which corresponds to b; =0, by=2 in expression (2.2).
The fixed points are €% =1, ¢* =—2, and therefore the
allowed energy interval is [g,;,€,]=[—2,2] for the
level-1 stage.

In this example, a novel feature appears: Let us take
the values within [—2,2] and substitute them into the
left-hand side of (3.4); we find that two new allowed ener-
gy intervals merge and thus new forbidden regions never
appear. Therefore the allowed energy interval for the
level-1 system will apply to any level and the Cantor set
structure will not appear.

We would like to consider a general problem, i.e.,
b, =0 and b, >0. It is easy to find that the allowed ei-
genvalue intervals are always symmetric for any stage of
the structure and there are two two-scale Cantor sets ex-
cept for by=2. In fact, when b,=2+0, where 0 is orbi-
trary values (even if infinitesimal), the forbidden gap will
generate and enlarge with the increase of 6.

D. Lattice vibrations on SG

We now apply the above theory to a dynamical
problem—elastic vibrations on two-dimensional SG.
Since the equations of motion for elastic vibrations (one
equation for each site) are similar to the Schrodinger ei-
genvalue equations associated with the Hamiltonian (2.1),

< >
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FIG. 6. The construction process of Berker lattice; the level-
1 lattice is the generator.
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a similar decimation procedure leads to the recursion
equation for the eigenvalue of frequency

en_1=—afl+5€n , ford=2. (3.5)

Using the formula (2.3), we obtain the fixed points £* =0
and &% =4, and thus the allowed interval is
[€11,€12]=[0,5] for the level-1 SG. Since the negative
values of frequency are not allowed, the allowed eigenval-
ues are restricted. Repeating the application of (3.5), we
generate the allowed and forbidden frequencies for all
different level-n stages which form two two-scale Cantor
sets with a suitable choice of common length rescaling
factors 0.224 5667 and 0.352 101 3. We also obtain the
curves D, and f(a).

IV. CONCLUSIONS

We have investigated a kind of recursion relations (2.2)
and its inverse with the restrict: The iterating results do
not approach — oo for the electron spectrum and do not
take negative values for elastic vibration. The general

character of the energy (frequency) spectrum is the ex-
istence of two two-scale Cantor sets in which the com-
mon rescaling factors of each approximately equal some
average values. The choice of the average values is such
that the relative error is as small as possible. We have
also introduced a probability measure possessing an exact
recursive structure and found the curves D, and f(a) for
a given measure.

Mathematically, the above recursion relation
represents maps in a real number region, and therefore
the results also reflect the general feature of the maps.
We believe that our finding will promote the understand-
ing of a kind of physical problem, not only a tight-
binding type one on fractal lattice but also other dynami-
cal problems, perhaps.
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